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SUMMARY 
In this paper an exact method is described for computing numerically the scattering by an inhomogeneity in a 
cylindrical waveguide. The "Generalized Telegraphist's Equations" are used to transform the electromagnetic-field 
equations into a system of ordinary differential equations. The latter system behaves numerically unstable. A 
method is given to cope with this difficulty. Numerical results are presented for two- and three-dimensional 
obstacles in a waveguide of rectangular cross-section and they are compared with those obtained by other methods. 
Our method requires, in general, a relatively small amount of computation time and storage capacity. Another 
advantage of the method is its flexibility. 

1. Introduction 

In this paper an exact method  is described for comput ing  numerically the electromagnetic 

scattering properties of an inhomogenei ty  in the dielectric and/or  the magnetic properties of 

the medium in an otherwise uniform, cylindrical waveguide (Fig. 1). In the waveguide, three 

different regions are distinguished, viz. the Regions 1 and 3 in which the medium is 

homogeneous  and Region 2 in which the inhomogenei ty  in the properties of the medium is 

located. In the homogeneous  regions of the waveguide, the fields can be expressed in terms 

of  an uncoupled system of TE-, TM-  and, if present, TEM-modes .  In Region 2, where the 

inhomogenei ty  is located the "Generalized Telegraphist 's Equat ions"  El] are used to 

t ransform Maxwell 's partial differential equations into an infinite system of ordinary 

waveguide ~ j ! / .e37 wavegui~te 

¢i,1~i ¢2(u,v,z), ~ ~  

Region 1 In Reg,o~ 
(a) z=zl 

ogeneousl¢~!ijii Uniform ~!i 
~ w g u ~  ~iil ~vego~o~ ~iii 

(b) z'~ 
Figure 1. Cross-section (a) and longitudinal section (b) of the waveguide configuration. 
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158 G. Mur  

differential equations in z, the longitudinal coordinate. The presence of the inhomogeneity 
causes these differential equations to be coupled through z-dependent coupling coefficients. 
At either boundary between a homogeneous and the inhomogeneous region, continuity 
conditions apply. The relevant system of differential equations appears to be numerically 
unstable. In Section 4 we present a method to transform the system of differential equations 
into a related one with better stability properties as regards its numerical solution. To 
illustrate the applicability of the method, the scattering properties of obstacles of varying 
complexity, present in a waveguide with rectangular cross-section, are computed. The 
results are presented in Section 6. 

The hitherto-known methods that deal with scattering problems of the type under 
consideration, are either approximate in nature, such as quasi-static approximations [2], or 
exact, using an integral-equation formulation of the problem [3, 4, 5]. Although being exact, 
integral-equation methods have the disadvantage that they require the (often very time 
consuming) evaluation of dyadic Green's functions, and, in general, a large amount of 
storage capacity. Our method of solution is exact, too, but requires only a relatively small 
amount of computer time and storage capacity [6]. 

2. Description of the configuration 

The configuration under consideration (Fig. 1) consists of the three different regions that are 
defined in Table 1. In this table, also the permittivity e and the permeability # applying to 
these regions are indicated, as well as the relevant wavenumbers. We slaall consider time- 
harmonic fields. The complex time factor exp (j~ot), where j = imaginary unit, ~ denotes the 
angular frequency and t the time, is omitted in the formulas. Since the media in the 
waveguide may be lossy, the constitutive coefficients are in general complex with a negative 
imaginary part. 

TABLE 1 

Regions in the waoe#uide. 

Region Location Constitutive coefficients Wavenumber  

(u, v)eD e, It of the medium Re(k) > 0 

Region 1 - ~  < z < z 1 eoel, PoPl kl = ko(et/tl) ½ 

Region 2 z 1 < z < z 2 eoe2(u, v, z), #o#2(u, v, z) k 2 = ko(e2/z2) t 

Region 3 z 2 < z < oo eoe3,/Zo# 3 k 3 = ko(eafl3) i 

e 0 and Po denote the permittivity and the permeability respectively, of the reference medium; k 0 = 09(eoPo)½ > 0 

denotes the wavenumber  in the reference medium. 

The electromagnetic fields in the configuration satisfy the source-free electromagnetic- 
field equations 

V x H = jcoeE, V x E = -jcopH, (1) 

where e = e(r) and # =/z(r) denote the local value of the permittivity and the permeability, 
respectively. The waveguide wall is assumed to be perfectly conducting and on it the 
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boundary condition 

n x E = 0 (2) 

holds (n denotes the unit vector along the normal to the waveguide wall, as shown in Fig. 1). 

3. Derivation of  the "Generalized Telegraphist's Equations" 

As has been stated in the introduction, we shall in Region 2, where the inhomogeneity is 
present, transform the electromagnetic-field equations into a system of "Generalized 
Telegraphist's Equations". In the derivation of these equations we shall closely follow the 
line of thought due to Schelkunoff [ 1]. Thus, we first consider the modes of propagation in a 
guide filled with a homogeneous reference medium, not necessarily being vacuum. Each 
mode in this waveguide is described by the transverse distribution pattern T of either a 
potential or a stream function. To indicate the distinction between TE- and TM-modes we 
follow the convention adopted in [-1], where the ordinal numbers for TE-modes are enclosed 
in brackets and those for TM-modes in parentheses. The TEM-modes will be treated as a 
special case of the TM-modes. For convenience, we use a single-subscript notation, while 
arranging the modes in the order of non-decreasing cut-off frequencies. The function T(u, v), 
where u and v are suitable coordinates in a cross-section D with boundary C (see Fig. 1), is a 
solution of the two-dimensional Helmholtz equation in the cross-sectional domain. For TE- 
modes we have 

(Vv 2 + x~,])T[,] = 0 in D, (3) 

together with the boundary condition 

a.Tt, ] = 0 on C. (4) 

In (3), xt. ] denotes the (real) cut-off wavenumber of the n-th TE-mode, while V T = V- iz?  =. 
For TM-modes we have 

(V 2 + K~,))T~,)= 0 in D, 

together with the boundary condition 

(5) 

Tt, ) = 0 on C. (6) 

In (5), x(.) denotes the (real) cut-offwavenumber of the n-th TM-mode. The T-functions, that 
are chosen to be real, satisfy a number of orthogonality relations that are given in [1]; they 
are normalized such that 

(7) 
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The transverse components E r and H x of the electric- and the magnetic-field strength, 
respectively can be expressed in terms of the potential and stream functions, ~u and U for 
TE-modes, V and H for TM-modes, as 

E T = --VTV--}- i z x V T ~  , n T = - V T U  - i z x VT/-/ ( 8 )  

where i denotes the unit vector in the direction of increasing z. In general, the potential and 
stream functions can be written as 

P(u, v, z) = - Z v), 
n 

V(u, v, z )  = - 2 v), 
n 

V ( u ,  v, z) = - X It.I(Z) n (U, V), 
11 

H(u,  v, z) = - ~. I~.)(z) T~.)(u, v), 
n 

(9) 

where the minus signs have been inserted to avoid a preponderance of minus signs in later 
equations. The V's and the l's of a mode represent the "voltages" and the "currents" in the 
equivalent transmission lines. Substituting (9) in (8) we obtain 

ET = X (V(n)(Z)VTT(n)(N,/)) -- i z X V[n](Z)VTT[n](N ,/))), 
H 

l iT  = Z (Itn](Z)VTT[n]( u, v) .4- i z X I(n)(Z)VTT(n)(U, O)). 
n 

(10) 

We note that in obtaining (10), the medium in the reference waveguide, apart from being 
homogeneous, has not been specified. Furthermore we note that the expansion (10) of the 
transverse field components E T and H T is in terms of a complete sequence of transverse field 
distributions. 

Having derived general expressions for the transverse field components in the reference 
waveguide, we now consider the fields in Region 2. To obtain expressions for the transverse 
field components in this region, we separate the transverse field components in the 
electromagnetic-field equations (1) from the axial ones and write the result as 

OzHT = V T G -  jcoei z x ET, 

E~ = (jcoe)-1VT.(H T ×/z) ,  

~zET = VTE  z + jogld~ x HT, 

H z = (jco/t)-1V T "(i z X ET). 
(11) 

As a consequence of the completeness of the sequence of expansion functions, the expression 
(10) for E r and H T can also be used in Region 2. Substituting (10) in (11) and eliminating 
the longitudinal field components E z and H z we obtain 

Z (~zl[n])VTT[n] q- Z ((~zl(n))iz X VTT(n ) 
n n 

= -jcoe X (V~.)i. x VTT(n ) "JV V[n]VTT[n] )  - Z K~nIV[n]VT((jco/t)- 1T[n]), (12) 
n n 

n n 

= jcolt ~ (It,qi z x V T T [ n  ] - -  I(n)VTTtn)) - Z K~,OI(,,)VT((jcoe)-I TOO)" 
n n 

(13) 
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We now perform the following operations. First, we carry out a scalar multiplication of (13) 
by the vector functions i × VTT[~ ] and VtTtm ), respectively. Secondly, we carry out a scalar 
multiplication of (12) by the vector functions VtTtm ] and i~ x VTT~r,) , respectively. 
Subsequently, we integrate the four resulting equations over the cross-section D of the 
waveguide. As a result we obtain, using the orthogonality relations of the T-functions and 
the normalization conditions (7), a system of differential equations that can be written as [1] 

with 

and 

-~vt.)(z) = Z (z[~][.](z)IE.](z) + ZLm]~.~(Z)I{.~(Z)), 
n 

--OV~m)(Z ) = ~ (Z(m)M(z)I[.](z) + Z(m)(.)(z)I(.)(z)), 
n 

-O=I[,.l(Z) -- Z (Yt,,q[.l(z)V[,,](z) + Ytm](.)(z)Vt.)(z)), 
t l  

-OJ(,.)(z) = E (Y.,,)[,,](z)V[.](z) + Ytm)(.)(z)V~.)(z)), 
n 

in Region 2 (14) 

Z[.,][.](z)=J~o~off/~2(izXVTT(.O'(i~XVTTt.])dA, 

Z[,.l(,,)(z) =-j~Ol~offol~z(i~×VvTt,.]) 'VtTt.)dA, 

Z(m)[.](Z)= --Jc°l% f fDllzVxT..)'(i~ x VTT[.I)dA, 

z~,.,~.~(z) = jo~, o u~V~,.~.V~r~.,dA + ~,.~ ~ . , )L  ( J~°~) -~  ~,.~.~dA, 

Y[m][.](z) = Jc°eo f f e2VvTE.,]" VTT(.jdA + ~[z]Kt2.j f f (J~°~o~2)- l TE~]T[.]dA, 

Yt,.l(.)(z) = jwe o fro ~ VTT~,,))dA, 

Y~,[.j(z)= J~°eo f f e2(i~ × V.~,)'V.TE.,dA, 

(15) 

(16) 

Now, (14) constitutes the system of generalized telegraphist's equations for the in- 
homogeneity in Region 2. These first-order ordinary differential equations are to be 
supplemented by boundary conditions at the planes z - - z  I and z = z 2 bounding the 
waveguide section in which the inhomogeneity is located. Across these planes the tangential 
field components E T and H T are continuous. In order to formulate the relevant boundary 
conditions we must first obtain expressions for the transverse field components in Region 1 
and Region 3. 
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In Region 1 we assume that the field consists of incident modes travelling in the positive z- 
direction, having a voltage 1~ and a current P, and scattered modes travelling in the negative 
z-direction having a voltage V s and a current P. The transverse field in Region 1 can 
therefore be written as 

E T  ~ i s = ( v ; , ( . )  + V~ , ( . ) )VTT( . )  
m 

V i V~ . )V~T..,, - izXX( 1,[m] "]- ,[ ] | ] 
m 

= X (I,,tm] + I~,t,,i)VTTt.,] 
m 

m 

in Region 1 (17) 

The voltages and the currents of these (uncoupled) modes are related through 

V~, [.q I i V. s 
= Zl,tm] 1,tm], 1,t.] = -Zl,t.]I~,tm], (18) 

V~,(ra) = Zl , (m)I~, (m ), V~,(m) = - Zl,(,n)ISl,(ra). 

In (18), ZI,t,.] and Z~,(m ) denote the wave impedances of the m-th TE- and TM-mode in 
Region 1, respectively. We have 

Zl,t,.] = jtog0/q/Fl,t ,  v Z l , ( m  ) = Fl,(m)/Jmeoel, (19) 

where F~, tml and/'l,(m) denote the propagation coefficients of the m-th TE- and TM-mode in 
Region l, respectively, i.e. 

~_ K 2 Fl,tml ( tm] - ka2) ½ with Im(Fl,t,.j) _> 0, 
(20) 

Fl.(m ) = (X(2m) - k12) ~ with Im(Fl,t,,) ) _> 0. 

The propagation factor of a mode is exp ( -  Fz). In Region 3, the field consists of incident 
waves travelling in the negative z-direction and scattered waves travelling in the positive z- 
direction. The transverse fields in Region 3 are written as 

E T  i = X (v~,(m) + V~,(m))VTT(m) 
m 

i~ x Z i V~ r~ )VTT'. ,  - ( v ~ , [ . ) )  + , t ]  ( ]  

m in Region 3 (21) 
H T E  i I s = (I3,tm] + 3, [mI)VT Tim] 

m 

+ i x ~  i (13,(m) + I~,(.))VT T(m), 
m 

where the voltages and the currents are related through 

V~,[m ] Z i - 3, [m]I3, [m]' 

V i i 
3,(m) ~- - -  Z3,(m)I3,(m), 

Vfl ~ Z s I 3, [m] 3, [m]-3, [m]' 

V. s 3,(m) = Z3 , (~) I ; , (my  
(22) 
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In (22), Za,tm I and Z 3 , ( m  ) denote the wave impedances of the m-th TE- and TM-mode in 
Region 3, respectively, i.e. 

Z3,[ra] = jfo/.t0/./3//'3,[m], Z3,0n ) =/'3,(,n)/jtOgoC3, (23) 

where Fa, [m] and F3,t,,) denote the propagation coefficients of the m-th TE- and TM-mode in 
Region 3, respectively, with 

K 2 Fa,t,.l ( [,~1 - k2)~ with Im(Fa,tmj) _> 0, 

Fa,(m ~ = (x(2) - k2) ~ with Im(Fa,(m)) _> 0. 
(24) 

Now we derive the boundary conditions pertaining to the system of differential equations 
(14). Taking the limit z J, zx in (10) and z T z~ in (17), using the continuity of the tangential 
field components at the plane z = z~ and the orthogonality properties of the T-functions we 
arrive at 

It~l(z, ) = I~.tmj(z,) + Ii,t~l(Zl), 

V(m)(Z1) = V~l,(m)(Z1)"-I- V;,(m)(Z1) , 

I(m)(Z1) = I~,(m)(zl) + I],tm)(Z, ). 
(25) 

Eliminating the scattered fields from (25) by using (18), we obtain the boundary conditions 

Vt,,,~(zl) + Zl,t,,qIt,.l(Zl) = 2V[,t .q(z,) ,  V~,,,)(zl) + Zl,(m)Y(ra)(Z1) = 2V~ m (Z~) (26) ,( ) • 

In the same way, using (10), (21) and (22), we obtain at z = z 2 the boundary conditions 

Viral(z2) - Z3.t, , j t . , l(z2) = 2V~.tmj(z2), V~,,,)(z2) - Z3,o.)I(,,,)(zz) = 2V~.<.)(z2). (27) 

Now (14), together with the boundary conditions (26) and (27), constitutes a two-point 
boundary-value problem. After having solved this boundary-value problem, the scattered 
fields in the Regions 1 and 3 can be computed by again using the continuity conditions (25) 
and the corresponding conditions at the boundary plane z = z 2. 

The numerical solution of the two-point boundary-value problem could be obtained by 
using standard techniques, for instance by using a shooting method in which case the 
problem is replaced by a related initial-value problem [7, 8]. However, the corresponding 
initial-value problem turns out to be numerically unstable I-6]. Consequently, in this way 
only inhomogeneities of relatively small axial dimensions can be investigated (in general the 
axial dimension should be smaller than the transverse dimension of the guide). In Section 4 
we shall transform the present two-point boundary-value problem into a different 
boundary-value problem, the latter having the advantage of leading to an associated initial- 
value problem that is stable. 
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4. Transformation of the system of differential equations into a stable one 

In order to cope with the stability problems posed by the numerical solution of (14), we 
introduce new z-dependent potential functions V[~] and V~) that are defined as follows 

Viii(z) = l(V[,.](z) -t- Z[,.]I[.,](z)), in Region 2 (28) 

v~(z) =1 z 2(Vo.)( ) + Z(,.)I(,.)(z)). 

In (28), Z[,.] and Z(,.) denote the wave impedances of the m-th TE- and TM-mode, 
respectively, in the homogeneous reference waveguide. For the impedances and the 
admittances of the modes in the reference waveguide we have 

Z[.,] = y[~,]l = jo~/go/F[.,], Z, , .)= y(~,)x = ~.,/j~oe0, (29) 

where F[,.] and ~m) denote the propagation coefficients of the m-th TE- and TM-mode in the 
homogeneous reference waveguide, respectively. We have 

F[,.] = (x~,.] - kg) ½ with Im(~, .])  _> 0, 

F~.,> = (x(~>- k2) ~ with Im(~m> ) _> 0. 
(30) 

At this point we observe that the permittivity e o and the permeability/% of the reference 
medium can still arbitrarily be chosen. The differential equations to be satisfied by V. ± and [m] 
V(~) are obtained from (14) and (28) as 

2 ± - azvE,.](z) = y (zE,.]E. j~.]  --- ZE,.yL,.jt.])VE.~ 
n 

+ Z (-zt~jt.yt.~ +- zt,.yt.,]t.~)vt~ 
n 

fz 

n 

± - 2 a ~ ( ~ t  = Z (z~>t.]~.j--- z ~ > ~ t . ] ) ~  
n 

+ 2 (-z~>t.j~.] -+ z<~>t.])~2~ 

+ Z (-z<,.>~.y<.~ __ z<,,,>Y~,~<.>)~2~. 

in Region 2 (31) 

The corresponding transformation of the boundary conditions (26) and (27) leads to 

(1 -4- Zl.[,~]Ytm])V[+](zl) -4- (1 - Z l . [m]~.q)Vt~] (z l )=  2~.[m](Zl) ,  

(1 + Zl,(,.)Y(m))V~+)(zl) + (1 - ZI,t,.)Y~,.))V(~,)(z 1) = 2~,(~)(zl), 
(32) 
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and 

( i  - Z3,tr~iYtml)Vt+~(Z2) q- ( i  + Z3,tmlYt~1)V[~j(z2) = 2V~,tm~(z2), 

(1 - Z3,(~)Y~m))V(+~)(Z2) + (1 + Z3,(m)Y(m))~((m)(Z2) = 2 ~ , ( m ) ( Z 2 ) .  

(33) 

The two-point boundary-value problem defined by the system of differential equations 
(31), together with the boundary conditions (32) and (33), can again be solved by using a 
shooting method. The initial-value problem obtained in this case turns out to be numerically 
stable. The related scattered field is obtained from 

Vl, E~](z~) = ~ : ] ( z , )  + vr~](~ ~) - v~,[m](zl), 
s Z V, + v;.m~(,)-- (~ (z , )+  ~ ( Z x ) -  ~,~(Zx),  

(34) 
s Z v~,t.l(2) = vt:l(z2) + v~,l(z2) - E,t.j(z2), 

~,,m~(z~) = ~) (z  2) + ~;.~(z~)- E,~(z2). 

As to the interpretation of the transformation we note that it is chosen such that E + and [m] 
Vt +) would represent amplitudes of modes in the reference waveguide travelling in the 
positive z-direction, while Vt~ 1 and Vt~,) would represent amplitudes of modes travelling in 
the negative z-direction. The resulting differential equations (31) are such that in the 
reference waveguide the mutual coupling between the modes vanishes and we end up with a 
system of uncoupled first-order ordinary differential equations. 

The fact that the system of differential equations (31), contrary to the system (14), leads to 
a stable associated initial-value problem, can be explained by studying the value of the 
elements of the coefficient matrices in these differential equations. It can be shown that the 
diagonal elements of the matrices (Z(m~(,)) and (Yt~lt,l) are approximately proportional to the 
square of the cut-off wavenumber of the appertaining mode. This property will cause an 
appreciable loss of accuracy when the summations in (14) are carried out, expecially for 
higher-order field components, and as such it is the cause of the instability in the solution of 
the initial-value problem. As to the elements of the other matrices in (15) and (16) we note 
that they show no striking dependence on the wavenumber. In (31), the elements of the 
impedance- and admittance matrices are multiplied by a wave impedance or admittance of a 
mode in the reference waveguide. Because of this, the diagonal elements of the coefficient 
matrices in (31) are approximately proportional to the cut-off wavenumber itself of the 
appertaining modes. Because of this, the summations in (31) do not suffer from an 
appreciable loss of accuracy and consequently the initial-value problem related to (31) 
behaves numerically stable. The system of differential equations (31) is referred to as the 
coupled-mode form [9] of the generalized telegraphist's equations. 

5. Discussion of the numerical techniques 

In solving the diffraction problem under consideration, numerical difficulties of two 
different kinds are encountered. The first is posed by the evaluation of the impedances and 
admittances defined in (15) and (16). The accurate computation of these coefficients is 
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difficult for those transverse modal functions Tt,,j and T~m ) that oscillate rapidly over the 
cross-section, For all but the lower-order modes these oscillations are more rapid than the 
changes in the permittivity and the permeability over the domain occupied by the obstacle. 
In general, reliable results are achieved in the following way. For a given value of z, the 
cross-section is divided into subdomains of such size that the medium properties over these 
subdomains can, with sufficient accuracy, either be assumed to be constant or to vary 
linearly as a function of the transverse coordinates. The shape of these subdomains is chosen 
such that, for the transverse modal functions at hand, the double integrations over the 
former can be carried out analytically. The integral over the cross-section D then follows as 
the sum of the integrals over the subdomains. In some cases it is possible to write the two- 
dimensional integral as the product of two one-dimensional integrals. This property 
simplifies the computations considerably. 

The second numerical difficulty lies in the numerical solution of the two-point boundary- 
value problem defined by the system of differential equations (31), together with the 
boundary conditions (32) and (33). This two-point boundary-value problem is solved by 
using the method of invariant imbedding [10]. The exact form of the imbedding that we 
have employed, it outlined in Appendix A. We have chosen the method of invariant 
imbedding mainly because of its relative ease to handle general boundary conditions as 
compared with shooting methods. We have solved the initial-value problems (A.7), (A.8) 
and (A.9) with the classical fourth-order Runge-Kutta formula [11]. For the integration of 
(A. 12) we have used the Euler-MacLaurin summation formula [ 12]. All computations have 
been carried out in single precision arithmetic on the IBM-370/158 computer of the 
Computing Centre of the Delft University of Technology. 

Finally, it follows from (32) and (33) that the square matrices ~t,/~, ~ and ~ in (A.3) and 
(A.4) are diagonal ones, which simplifies the solution of (A.15) considerably. 

Several checks on the computer program and on the computational results have been 
carried out in order to eliminate possible inaccuracies and/or errors. We mention some of 
them. 
(1) Conservation of energy. In lossless configurations, i.e. when e and/z are real, the power 
carried by the incoming field should equal the power carried by the outgoing field. This 
condition was satisfied to within at least five significant figures. 
(2) Reciprocity. In reciprocal configurations (to which class our obstacles belong), scattered 
fields that pertain to two different incident fields should satisfy certain reciprocity relations. 
These relations were satisfied to within five significant figures. 
(3) Geometrical symmetry. In many configurations the waveguide and the inhomogeneity 
present in it show a number of geometrical symmetry properties. Scattered fields associated 
with suitably chosen incident fields (as far as geometrical symmetry is considered) should 
reflect the symmetry of the configuration. This condition was satisfied (without having these 
symmetry properties built in in the numerical procedure, of course). 
(4) Convergence of numerical procedures. The accuracy of a numerical integration depends 
on the number of intervals (subdomains) that has actually been chosen. In general, an 
increase of this number is expected to improve the accuracy of the result and hence to give 
some insight into the accuracy eventually obtained. Furthermore, we know from numerical 
analysis the relation between the stepsize and accuracy. The relevant relation proved to be 
consistent With the one obtained from the actual numerical results. 
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(5) Comparison of our results with those that have been obtained by other methods. Results 
that are obtained by our method of computation are compared with those that have been 
reported in papers that deal with other numerical techniques [3, 4, 5, 13, 14], or with 
experimental results [13, 15]. Our results are found to be in accordance with the com- 
putational results from [3], [5] and [14]. Discrepancies have been found between our 
results and those given in [4] and [13]. More detailed comments on this are given in 
Section 6. 

Finally, we note that the stepsize, the number of subdomains and the number of modes 
taken into account have been chosen such that our final accuracy proved to be a few percent. 
For the reference medium we have chosen vacuum i.e. e o = 8.8544,10-~2,/1 ° = 4zc, 10-7. 

6. Numerical results 

In this section numerical results pertaining to three different types of obstacles present in a 
waveguide of rectangular cross-section are presented. In the waveguide cross-section D we 
choose a Cartesian coordinate system with its origin at one of the corners. The x- and y-axis 
are taken in the walls of the waveguide cross-section. Changing to the usual double- 
subscript notation, the T-functions are [-1] 

Ttm,,l = (4ama ,/ab)½KU~,] cos (mrcx/a) cos (mzy/b) 

with m, n = 0, 1, 2 , . . . ,  (m, n) # (0, 0), 

T~m ,.) = (4/ab)~K~-ml ) sin (mzcx/a) sin (nzy/b) 

with m, n = 1, 2, 3 . . . . .  

(35) 

where D = {x, yl0 < x < a, 0 < y < b}, 

tO[m.. 1 = /¢(m,.) = ((turf~a) 2 + (nzc/b)2) ~ > O, 

and 

(36) 

{} when p = 0 ,  

a p =  when p = l , 2  . . . .  , 
(37) 

where a and b denote the sizes of the waveguide in the x- and y-direction, respectively (Fig. 
2). Three applications of our method will be given. 
(1) E-plane applicator. The first configuration we deal with is the so-called E-plane 
applicator (Fig. 2). An E-plane applicator is a waveguide section of rectangular cross- 
section, loaded by a dielectric sheet that is parallel to the direction of the electric-field vector. 
This configuration is applied, amongst others, in drying leather sheets with the aid of 
microwave power [,15]. Neglecting the influence of the slots through which the sheet is 
transported across the guide, we can consider the leather sheet as a lossy dielectric obstacle 
that is cylindrical in the y-direction. A longitudinal section of the configuration is shown in 
Fig. 3. The waveguide used is the WR 284 guide (Table 2). The operating frequency of the 
incident dominant TEl.o-mode, which is travelling in the positive z-direction, is chosen to be 
2.45 GHz. The leather sample of thickness c is placed at the centre of the waveguide, hence 
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~e 

Figure 2. Rectangular waveguide with cylindrical leather sheet [13]. 

¢:% 

L [ 
o1! 

• L , z 
z % z : ~  

Figure 3. Longitudinal section of E-plane applicator [13]. 

TABLE2 

Dimensions ~standardwaveguides ~rectangularcross-section. 

Waveguide Width a Height b 
designation mm mm 

WR 90 22.86 10.16 

WR 284 72.14 34.04 

TABLE3 
Results~rwetleathersamples ~thickness2.5mmina WR284waveguideat2.45GHz. 

Moisture 
Length e = e '  - j e "  

percentage on 
m m  ~ ~" 

wet basis 

Reflection factor, dB Transmission factor, dB 

Bhartia Bhartia Our Hamid Bhartia Our 
measured computed results measured computed results 

0.0 90.2 2.01 0.118 
7.8 94.0 2.23 0.182 

18.8 96.5 3.58 0.783 
38.8 99.3 10.68 3.361 
57.3 99.6 29.46 8.888 

9.2 8.88 27.3 0.29 0.273 0.291 
9.6 9.39 30.7 0.46 0.485 0.455 

12.3 12.64 23.4 1.9 1.975 1.92 
6.42 6.42 8.51 7.3 7.27 7.48 
4.6 4.68 5.10 19.4 19.13 20.5 

Journal of Engineering Math., Vol. 12 (1978) 157-175 



Electromagnetic scatterin 9 in a cylindrical waveyuide 169 

d = (a - c)/2 (see Fig. 3). Since the configuration is cylindrical in the y-direction and the 
incident field is independent of y, only TE,,, o-fields, m = 1, 2 . . . . .  will be excited. In Table 3 
our results are compared with the experimental results of Hamid et al. 1-15] and with the 
experimental and computational results of Bhartia [13]. The results for the transmission 
factors agree favourably. For the reflection factors however our results differ considerably 
from those of Bhartia. For those of his leather samples that have a moisture content of 0~ 
and 7.8~ it can be shown that the total power carried by the reflected and the transmitted 
field (as obtained from Bhartia's results) exceeds the incident power and this violates the 
law of conservation of energy. Therefore, the reflection factors presented in 1-13] are 
expected to be in error. 

In our computations the number of modes that has been taken into account runs from five 
to eleven; the higher the permittivity of the leather sample, the larger the number of modes 
that is needed in the computation. The relevant computation time amounts from about ten 
seconds for five modes to eighty seconds for eleven modes. 
(2) Cylindrical plasma column of variable electron density. The second configuration to be 
considered is shown in Fig. 4. A circularly cylindrical plasma column of radius p is placed 
parallel to the narrow side (y-direction) of a rectangular waveguide. The axis of the plasma 
column is located at x = a/2, z = 0. The plasma column is assumed to have a radially 
varying electron density distribution of the form 

n(r)=no(1 -~r2/p2), (38) 

c) 

X t 

f ~ F - \  

//[! 
~ - ~  Y 

a/2 
/ a 

nnOl ' ~ a = 0  

~ a -- 0.4 

0 ~ - a - - 1  
--~p 

(a) (b) 

Figure 4. Cylindrical plasma column in a rectangular waveguide (a) and electron density profile (b) [14]. 

TABLE 4 
The values of ogp.o, ~ and v taken from [14]. 

0~ (£)p,0 (rad/s) v (Hz) 

1 67.5* 109 3.5 * 109 
0.4 50.5 * 109 1.6 * 109 

0 45.0* 109 1.0.109 
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where n o denotes the electron density on the axis of  the column, r denotes the radial distance 
from a point in the column to its axis and ~ is a parameter (0 < • < 1) whose value 
determines the electron density profile. The relative permittivity e r of such a plasma column 
can be written [16] as 

~r : 1 - CO2,o(1 - ctr2/p2)/(CO(co - jv)), (39) 

where cop, o denotes the plasma frequency corresponding to an electron density no, and v 
denotes the collision frequency. The waveguide used is the WR 90 guide (Table 2). For the 
incident field we take the dominant TE1,0-mode travelling in the positive z-direction. A 
configuration of this kind is used for microwave plasma diagnostics [14]. Since the 
configuration is cylindrical in the y-direction and the incident field is independent of y, only 
TE,,,o-fields, m = 1, 2 . . . . .  are excited. In Fig. 5, the modulus IRI of the reflection factor R of 
the dominant mode and the value of arg (R)/n are plotted as a function of the frequency f for 
a plasma column with p = 10 mm, and for several values of ~. The values of COp, o and v that 
have been chosen are listed in Table 4, and have been taken from [14]. A good agreement 
between our results and those of Cupini et al. [14] is observed and consequently an efficient 
curve fitting method for the plasma diagnostic purposes can easily be realized by using our 
computer program. The computations have been performed by taking into account only 
three modes. The computation time amounts to about five seconds for a single problem. 

Next, we replace the plasma column by a column the axis of which is parallel to the broad 
side (x-direction) of the waveguide and located at y = b/2, z = 0. For the incident field we 
again take the dominant TE1,0-mode travelling in the positive z-direction. Since the 

le 1,2 

~ 1.1 

8 
1.0 

O.E 

0.4 

O 
8 

a=l 

a =U 

I I I I I I 
9 10 11 

f(GHz) 

~ p lasma  
c o lumn 

I 

I I I I I I 
9 10._,. .  11 

f(GHz) 

Figure 5. Values of IRI and arg(R)/z~ as a function of the frequency f and the parameter ct (axis of the plasma 
column in the y-direction), p = 10 mm. 
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configuration is cylindrical in the x-direction, the fields in the waveguide will show the same 
x-dependence as the incident field. Therefore only TEl,m-fields m = 0, 1, 2 . . . . .  and TMI,,,- 
fields, m = 1, 2 , . . . ,  will be excited. In Fig. 6 the modulus IRI of the reflection factor of the 
dominant mode and the value of arg(R)/zc are plotted as a function of the frequency f for 
several values of the radius p and for ~ = 0.4. The values of cop. o and v are taken from Table 
4. The computations have been performed taking into account five TE-modes and four TM- 
modes. As an example we mention that the computation time for p = 5 mm is about fifty 
seconds for a single problem. 

(3) Pyramidal waveyuide termination. The third configuration to be considered is the leaning 
pyramidal waveguide termination in a WR 90 guide. The configuration to be investigated is 
depicted in Fig. 7. A configuration of this kind is used to simulate a reflectionless waveguide 
termination. The square base of the pyramid is cemented to a perfectly conducting shorting 
plug at the plane z = 0. The side length of the base of the pyramid is d = b = 10.16 mm. One 
side of the pyramid, which has a length L, is cemented to the broad side of the waveguide 
wall for maximum mechanical strength and maximum heat dissipating capability. The 
inhomogeneous region, in which the field is described with the aid of the "Generalized 

Telegraphist's Equations", is taken to be the region (zl, z2) = ( - L ,  0). As a consequence of 
the shorting plane at z = 0, the boundary condition (33) at z = z 2 should be replaced by 

+ z %. ] (~)  + v[Z.l(Z ~) = o, 

%)(z~) + v(;.)(z~) = o 
(40) 

0 . 8  

0 " }  
~, 0.6 

Q4 

B 
08  

et 
O.6 
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~ ~ P : 5  mm 

~ p : 3  mm 
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I I I I I I 
9 10 11 
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[ . . . ~ b / p l a  sm a 
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~ p = 3 m m  

p=lmm 
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Figure 6. Values of [RJ and arg(R)/n as a function of the frequency and the radius p, (axis of the plasma column in 
the x-direction), ct = 0.4. 
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/ / ,/ / / / / /  ...~7"-------~Thisside is cemented 
. - , / . /  to,hew vego,Oewa,. 

Figure 7. Pyramidal waveguide termination cemented to the waveguide wall. 

1 

1 0 " J  J I l l I i I f I I f l  I 

1 2 3 4 5 6 7 8 9 
L(c ) 

Figure 8. Modulus  of the reflection factor as a function of the length of a pyramidal waveguide termination, 

e r = 2.2, #r = 1 - 1.25j, f = 9.84GHz. 

The pyramidal waveguide termination is made of lossy material with real relative per- 

mittivity e r = 2.2 and complex relative permeability Pr = 1 - 1.25j which properties are 
approximately those of ECCOSORB MF-117 as provided by the manufacturer. The 
operating frequency of the incident dominant TEl, o-mode, which is travelling in the positive 
z-direction, is taken to be 9.84 GHz. In Fig. 8 the modulus [RI of the reflection factor R is 
plotted as a function of the length L. In our calculations we have taken into account seven 
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TE-modes, viz. TEi. j, i = 0, 1, 2, 3, j = 0, 1, (i,j) ~ (0, 0) and three TM-modes viz. TMi, 1, i 
= 1, 2, 3. The computation time for L = 45 mm is 150 seconds. 

7. Conclusion 

In this paper an exact method is described for computing numerically the scattering 
properties of an inhomogeneity present in a cylindrical waveguide. Scattering con- 
figurations of various degrees of complexity are investigated, using a computer program 
that is based on this method. As compared with other methods, the present method requires, 
in general, a relatively small amount of computation time and storage capacity. Another 
advantage of the method is its flexibility. For a specific problem only a subroutine for the 
computation of the coupling integrals in (15) and (16) needs to be written, the remaining 
part of the program being unchanged. For obstacles that show strong local variations in 
their permittivity and/or permeability, a large number of modes has to be taken into account 
in order to arrive at the desired accuracy and this, even with our method, leads to 
considerable computation times and storage requirements. But then, no alternative is 
available either. Another limitation seems to be that the method cannot be generalized to 
problems involving perfectly conducting obstacles. For the latter type of obstacles, the 
integral-equation method still seems to be the only method of a general kind. 
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Appendix A. The method of invariant imbedding 

For the theory of the method of invariant imbedding to solve systems of ordinary 
differential equations numerically, we refer to Scott [10]. In this appendix we shall present 
the set of invariant-imbedding equations pertinent to the solution of the system of 
differential equations (31), together with the boundary conditions (32) and (33). Let us 
consider the system of differential equations 

OzU(Z) = A ( z ) u ( z )  + B ( z ) v ( z ) ,  z 1 < z < z2,  (A.1) 

- O z V ( Z )  = C ( z ) u ( z )  + D ( z ) v ( z ) ,  z I < z < z 2. (A.2) 

In (A. 1) and (A.2), u(z) and v(z) denote unknown z-dependent n-vectors, A (z), B(z), C(z) and 
D(z) denote known z-dependent n × n matrix functions. The system of differential equations 
is subject to the boundary conditions 

• u ( z  1 ) + ~ v ( z ,  ) = 81, (A.3) 

7u(z 2) + Ov(z 2) = 82. (A.4) 

In (A.3) and (A.4), ~t, fl, V and tJ are known n x n matrices and 81 and 8 2 are known n-vectors. 
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The functions and constants introduced above, are in general complex-valued. We shall 
assume that the system of differential equations (A.1), (A.2), together with the boundary 
conditions (A.3), (A.4), has a unique solution. We now introduce the Ricatti and recovery 
transformations through the relations 

u(z) = Rl(z)v(z ) + R2(z)u(zl), (A.5) 

V(Z1) = QI(Z)V(Z) "~ Q2(Z)U(Z1). (A.6) 

In (A.5) and (A.6), Rl(z), R2(z), Ql(z) and Q2(z) are complex-valued, z-dependent n x n 
matrix functions that are defined through the differential equations 

dzRl(z) = B(z) + A(z)Rl(z ) + Rl(z)(D(z ) + C(Z)Rl(Z)) , (A.7) 

~zR2(z) = (A(z) + R l(z)c(z))R2(z ), (A.8) 

dzQl(z) = Ql(z)(C(z)Rl(z) + O(z)), (A.9) 

3~Q2(z) = Ql(z)C(z)R2(z), (A.10) 

together with the initial conditions 

RI(zl)  = 0, g2(zl) = 1, Ql(zl)  = 1, Q2(zl) = 0, (A.11) 

that are in accordance with (A.5) and (A.6) at z = z r 
Now, the initial-value problem defined by (A.7)-(A. 11) can be solved in a straightforward 

manner, for instance by using a Runge-Kutta method. We note that (A.10) can be solved by 
first rewriting it as 

Q2(z) = QI(OC(OR2(Od~, (A.12) 

where we have used (A.11). The integration in (A.12) can be carried out easily. Having 
solved the initial-value problem, R 1 (z2), R2(z2), Q1 (z2) and Q2(z2) are known and we arrive 
at expressions containing the still unknown quantities u(z~), r(zl), u(z2) and v(z2) by using 
(A.5) and (A.6) at z = z r We obtain 

U(Z2) -~- Rl(z2)v(z2) --~ R2(z2)u(z1), (A.13) 

v(zl) = Ql(z2)r(z2) + QE(Z2)U(Zl). (A.14) 

Now, (A.3), (A.4), (A.13) and (A.14) constitute a system of four equations from which the 
unknown vectors u(zl), v(zl), u(z2) and v(z2) can be solved. Upon elimination of u(zl) and 
v(z2) we obtain a result that can be written as 
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1 "~ gl(z2)~-l~ R2(z2)~-l~ x (//(z2) ) 
QI (~ ) , f - '~ ,  1 + Q~(z~)~- ' i~}  t v ( z , ) )  = 

(R2(z2) ~t-' Ri(z2)t~- 1"~ (gl). (A.15) 

From (A.15), II(Z2) and V(Zl) can be solved and finally I/(Z1) and v(z2) can be obtained 
using (A.3) and (A.4), respectively. 
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